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Abstract— The paper attempts to modify the conventional Advanced Encryption Standard (AES) to obtain a customized and more secure 

algorithm. This modification is based on the use of artificial neural networks for key expansion schedule processes. The latter is achived 

with use of symmetric key cipher based on Pseudo Random Number Generation PRNG  in key generation processes for  the initial  

weights for the neural network. hen train it Fast and low cost training algorithm based on Levenberg – Marquardt Algorithm have been used 

to get outputs that match the conventional key expansion used in the conventional AES algorithm.The proposed modification have been 

investigated using Matlab ver.8.0 simulation to verify the ability of ANN based key expansion to produce the same ciphertext as that 

achieved by the conventional AES for the same plaintext. The results of comparison between the two model show the ability of the 

proposed modification to produce the same secure system even with different key expansion technique.  However, the use of neural 

network adds more security to the conventional AES, because the opponent need to know the topology of neural network and the number 

of iteration together with the initial value key that only required by the conventional AES. 

Index Terms—  AES, ANN, Key Expansion, LMA, PRNG. 

——————————      —————————— 

1 INTRODUCTION                                                                     

ryptography has become an essential component to 
control the authenticity, integrity, confidentiality and 
non-repudiability of private data that flows through 

public networks. With increasing performance, requirements 
and improvements in technology, better-adapted ciphers are 
making their apparition to replace aging algorithms [1]. Block 
ciphers are mostly based on the idea by Shannon, that sequen-
tial application of confusion and diffusion [2]. One of the most 
important type of blocj cipher that achieves the above re-
quirement is the Advanced Encryption Standard, AES.  

AES is an iterated block cipher which was selected by NIST 
as an international standard. It is now the most widely de-
ployed block cipher in both software and hardware applica-
tions. The three standardized versions of AES are called AES-
128, AES-192, and AES-256 differ from each other in the key 
lengths: 128, 192, or 256 bits, encryption consists of 10 rounds 
of processing for 128-bit keys, 12 rounds for 192-bit keys, and 
14 rounds for 256-bit keys [3]. The Rijndael developers de-
signed the expansion key algorithm to be resistant to known 
cryptanalytic attacks. The inclusion of a round-dependent 
round constant eliminates the symmetry, or similarity, be-
tween the ways in which round keys are generated in different 
rounds. The fewer bits one knows, the more difficult it is to do 
the reconstruction or to determine other bits in the key expan-
sion [4]. Thus the paper attempts to do some modification to 
stand against such sort of attacks by employing nonlinear neu-
ral network in the design and implementation of the AES.  

An Artificial Neural Network (ANN) is an information pro-
cessing paradigm that is inspired by the way biological nervous 
systems, such as the brain, process information. The idea of Ar-
tificial Neural Network (ANN) came from the desire to produce 
a system that are capable to sophisticated computations in the 
same way that the human brain performs so that it can give that 
same understanding of problem as human brain[6]. Thus,  the 
paper will attempt to implement Rijndael (Key Expansion in 
AES algorithm) using ANN, by using ANN for a purpose of 
Key generation. This approach is less complex design than the 
one with normal AES design and nonlinear in operation. The 
nonlinear must be reversible neural network that can make key 
expansion schedule  process on plaintext/ciphertext with high 
performance and very low error rate. This will consider the ar-
chitectural design of the ANN, the modification of ANN on 
software, testing the results of simulation, in order to provide 
NN-based AES. Further investigations are on the points of the 
significant effect on the implementation of NN, by keeping the 
internal structure of the NN components in mind, while making 
the design. Most of our discussion will assume that  AES  is a 
block cipher with a block length of 128 bits and the key length is 
128 bits[11].  

2 . CONVENTIONAL ADVANCED ENCRYPTION STANDARD 

ALGORITHM 

Conventional AES is an iterated block cipher with a fixed 
block size of 128 and a variable key length. The different trans-
formations operate on the intermediate results, called state. 
The state is a rectangular array of bytes and since the block 
size is 128 bits, which is 16 bytes, the rectangular array is of 
dimensions 4x4. (In the Rijndael version with variable block 
size, the row size is fixed to four and the number of columns 
varies. The number of columns is the block size divided by 32 
and denoted Nb). The cipher key is similarly pictured as a 
rectangular array with four rows. The number of columns of 
the cipher key, denoted Nk, is equal to the key length divided 
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by 32 [4]. During each round, the following operations are 
applied on the state [4]: 
1 .Sub Bytes: Every byte in the state is replaced by another 

one, using the Rijndael S-Box 
2. Shift Row: A transposition step where each row of the state 

is shifted cyclically a certain number of steps. 
3. Mix Column: A mixing operation which operates on the 

columns of the state, combining the four bytes in each col-
umn 

4. AddRoundKey: Each byte of the state is combined with a 
round key, which is a Different key for each round and de-
rived from the Rijndael key schedule 

5.  Final Round (No Mix Columns) 
•   SubBytes 
•   Shift Rows 
•   AddRoundKey 
In the  Add Round operation, a round key is applied to the 

state by a simple bitwise XOR. The round key is derived from 
the cipher key by the means of the key expansion. The round 
key length is equal to the block key length (16 bytes). The key 
expansion involves the followings: 
1) Takes as input a Nb word key and produces a linear array 

of Nb * (Nr+1) words. 
2) Expanded key provide a Nb word round key for the initial 

AddRoundKey() stage and for each of the Nr rounds of the 
cipher.  

3) The key is first copied into the first Nb words, the remain-
der of the expanded key is filled Nb words at a time. 

4) Assuming a 128-bit key, the key is also arranged in the 
form of a matrix of 4 × 4 bytes. As with the input block, the 
first word from the key fills the first column of the matrix, 
and so on. 

5) The four column words of the key matrix are expanded 
into a schedule of 44 words. Each round consumes four 
words from the key schedule. 
 
Fig. 1 clearly show the arrangement of the encryption key 

in the form of 4-byte words and the expansion of the key into 
a key schedule consisting of 44 4-byte words. 

 

 

 

 

Figure.(1): Key expansion arrangement 
 

3.  NN-Based Key Expansion for AES Algorithm Design 

To achieve the required AES operation, it is essential that the 
NN based key expansion  should work for both encryption 
and decryption processes. In the design, the proposed key 
expansion schedule process has the following parameters: 
i. The seed key (4 word) which represents the input vector to 

the NN. 
ii. The key schedule which represents the target vector (de-

sired output) of the NN. 

iii. The PRNG which represents initial weights of the NN.  
iv. The round keys will be extracted upon NN training 

achieved by both sender and receiver. The basic approach 
for training the model can be understood by the flow dia-
gram shown in as shown in Fig. 2. 
 
 
 
 
 
 
 

Fig. (2): Training operation foe NN key expansion for encryp-
tion/decryption processes 

 
Initially, some random values are assigned for the weight and 
bias values and these values are optimized using Levenberg-
Marquardt (LM) training algorithm [49].  Levenberg Mar-
quardt algorithm, LM Agenerally is one of the most popular 
algorithms for non-linear minimum mean squares problems. 
Because of the characteristics of rapid convergence and stabil-
ity, the method is used in many of the problems of modeling 
(Sakamoto et al, 2005).  
The structural configuration of the model is selected as either 
256,192 or 128. For the applied input pattern, some random 
numbers between +1 and −1 are assigned to the weights and 
biases and the output of the model is computed corresponding 
to that input pattern. Some arbitrary parameters required for 
training of the neural model like mean square error, learning 
rate, momentum coefficient, and spread value have also been 
taken as 5 × 10−7[49], 0.1, 0.5, and 0.5, respectively. 
The error between the calculated and the measured result is 
then computed and, according to this computed error, all the 
weights and biases are updated with the help of LM training 
algorithm. This updating process is carried out after present-
ing each set of input pattern, until the calculated accuracy of 
the model is estimated to be satisfactory. 

4.   Training and Operation Phase of the Proposed ANN 
Key Expansion 

In the training phase of the ANN, the plant (AES algorithm) 
generating the output number from specific input number the 
ANN takes the seed key (4 Word ) as an input and the random 
key (40 Word ) of the platform as output target. Next, the NN 
will be trained with the output target itself. After 8 to 10 itera-
tions or according to the acceptable error rate, the training 
period will be terminated. The NN which is used in the train-
ing process has topology [4-4-40-1]. It takes a vector of (16 
bytes) as input and produces (160 bytes) vectors as text train-
ers. The NN topology desirable in the process key expansion 
has been found to be: - 

i. Layer 1 with 4 neuron, where each neuron receives 4 byte 
from the input vector (key Word). 

ii. Layer 2 (hidden layer) with 4 neuron that each neuron is 
a weighted sum of all the 4 neuron in the 1st layer. 

iii. Layer 3 with 40 neuron that each neuron is a weighted 
sum of all the 4 neuron in the 2nd layer. 

iv. The output layer  with 1 neuron that is a weighted sum of 
all the 40 neurons in the 3rd layer. 
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In the operation phase, a three-layer feed-forward NN- 
with final weights will be created at the final output of the 
Pseudo Random Number Generator processes. This phase will 
continue to produce key-expansion until new key will be used 
in the system. As mentioned before, in the next step, the ANN  
need to be trained it-self with the new key. 

It is worth to mention that the key expansion schedule pro-
cesses uses a non-linear activation function to each neuron 
with hyperbolic tangent (tank). The property of sigmoid are 
used to produce an output in domain of (-1 to 1). The data that 
used in the AES are ranged between (0-255). Therefore, for the 
NN to operate properly with the key expansion within AES 
algorithm in presence of the sigmoid activation function, there 
is a need to make the data in the range of (0-1). This is 
achieved by scaling factor (1/256) to be compatible with the 
output activation function. A scalable factor at the output for 
each neuron to re-change the scope of production again at (0-
255) can also be used. 

The initial weights of the NN are produced by the  Pseudo 
Random Number Generator, PRNG for the encryp-
tion/decryption process. These 16 bytes key are taken by the 
NN in the following way: 

1. 4x1 matrix (represents the 4 bytes from the key according 
to the 4 bytes positions of input vector) to be the initial 
weights from input to layer 1. 

2. 4x4 matrix (represents 4 bytes from the key and repeated 
4 times) to be tie initial weights from layer 1 to layer 2. 

3. 40x4 matrix (represents the same 4 bytes in the layer 1, 
but repeated 40 times ) to be the initial weights from lay-
er2 to 3. 

4. 1x40 matrix (represents the same in layer 1 from input, 
but transposed) to be initial weights from layer 3 to out-
put layer. 

 
The output from the NN will be: 

 
-- (1)       

 
                                                                                                                                                                   

where the output is the key round for both of the encryp-
tion and decryption processes, w is the weights. The transfer 
function of tangent sigmoid in the hidden layers will be used 
to transfer an unlimited input range into a limited input range. 
The sigmoid function is characterized by their slope that 
should approximated to zero as the input increases. This give 
rise to a problem that when using steepest descent to learn a 
multilayer network with sigmoid functions, the regression can 
have a measure very small values. This will lead to small 
changes reasoned in weights and biases, even though the 
weights and biases are far from their perfect [50]. 

The learning algorithm adopted in this design is the LMA is 
as shown in Fig. 3. This algorithm was to approach second-
order training quickly without having to calculate the Hessian 
matrix. The training parameters for LMA are η inc , η dec. The 
factor η is multiplied by η dec whenever been reduced the 
performance function by a step.  It is multiplied by -η inc 
whenever a step would increase the performance function. If η 
becomes larger than -η max, the algorithm is terminated. The 

parameter mem_reduc is used to control the size of memory 
used by the algorithm[49]. According to the AES type 
(128,192,256), the NN has been trained with various initial 
weights (PRNG) and number of rounds to check the its validi-
ty with the AES. 

 
 
 
 

 

 

 

 

 
 
Figure.(3): Flow chart of LMA 

5 SIMULATION AND EVALUATION OF NN BASED AES 

KEY EXPANSION  

The performance of the NN based key expansion can be 
checked by an experiment that can test the NN for both en-
cryption and decryption processes. The test should also com-
pare their results and error ratio with the AES results. The first 
case in the simulation is the key expansion for AES_128.  The 
results of such test is as shown in Table (1) and figure (5) 
shows result of value approach zero at each iterations. 

 

Table(1)  Performance system through each iterations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4) curve plots of ANN Lines represent the linear re-
gression of observed and predicted value for AES_128 from 
Levenberg–Marquardt algorithm 

Mean Square Error (MSE) Time (Second) Epochs 

1.32860414799650e+04 0.2809999999999 0 

5.42712026082221e+03 0.3900000000001 1 

9.46660826171853e+02 0.4519999999998 2 

5.78951105726962e+01 0.5150000000001 3 

1.14737146278459e-01 0.5619999999998 4 

3.04542477671008e-06 0.6079999999997 5 

5.89287877837792e-13 0.6709999999999 6 

6.92718419325661e-21 0.7179999999996 7 

1.35240464698344e-27 0.7800000000001 8 

 
 
 
 
 
 
 
 
 
 
 
 
 

502

IJSER



International Journal of Scientific & Engineering Research Volume 5, Issue ƕƔȮɯ.ÊÛÖÉÌÙɪ2014                                                                                  
ISSN 2229-5518 

 

IJSER © 2014 

http://www.ijser.org  

It clear from the results presented in Table 1 and Fig. 4 that 
the average MSE keys training set were 1.32860414799650e+04 
To 1.35240464698344e-27, respectively. Average number of 
epochs and CPU time elapsed at the end of training, respec-
tively were 0.2809999999999 To 0.7800000000001s. The number 
of epoch (8) iteration 's .  

The following can be observed from the results presented 
in Table 1 anf Fig. 4; 

i. The system reduces the overall running time. This means 
that there is an improvement in performance when run-
ning in less overall system as shown in Table (1).              

ii. The output number of the key-Expansion training algo-
rithm is not identical to the desired target. Figure (6) 
shows the difference between Pseudo Random Number 
Generator (key word) of the AES and the NN-based AES.  

iii. To adjust the output to the desired target as exactly as 
possible we should run some processes. We will put the 
entire data set through the network will perform a linear 
regression between the network outputs and the corre-
sponding targets. We will need to un-normalize the net-
work outputs ,this can be achieved via round instruction. 
In this case we will have on approximation of number to 
three digits output. 

When the network completed the performance curve which 
determine the convergence of the training curve will have an 
error rate as shown in Fig. (5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (5): 2-D diagram (PRNG) between AES algorithm typical-
ly and the NN-based AES 
 

Often helpful to check the network response in further detail. 
One option is to carry out a regression analysis between the 
network response and the identical targets. The network out-
put and the identical targets slope need to be checked. If we 
had a completely matching (outputs exactly equal to targets), 
the slope would be 1, and the y-intercept would be 0. In Fig. 
(6) we can see that the numbers are very close. The correlation 
coefficient between the outputs and targets is a measurement 
of the extent of the variation at the output and by the targets. 
If this number is equal to 1, then there is an ideal relationship 
between the targets and outputs.  The results shown in Fig. (6) 
shows that we have a number very close to 1, which indicates 
it good fit. Furthermore, it can be shown that the behavior is 
linear between network outputs versus the targets. The perfect 

fit (output equal to targets) is indicated by the solid line. In 
this problem it is difficult to distinguish the best linear fit line 
from the perfect fit line, because the fit is so good. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (6) The training processes for the three layer  neural 
between Target and Output 
 

The paper also show the implementation and evaluation  of 
AES key expansion algorithm that based to LM-ANN for 128, 
192 and 256-bits. The shown in Table 3 show that; key size has 
an almost-linear impact on number of epochs (iterations), time 
and system performance. However, the AES standard has key 
size variants. Therefore, longer keys will give more secure 
encrypted text output. This means that the increase in the size 
of the key offset by an increase over time with a decrease in 
system performance (incremental MSE). Some companies that 
employ ultra-high security in their systems may require longer 
key size than 128-bit. Finally, the results shown in Table 3 
compare the performance of different AES and the time with 
respect to epochs used. 
 
Table (3) The epochs , Time & MSE for the training algorithms. 
 
 
 
 
 
 
 
 

4 CITATIONS 

 
 

Having produced the round keys using the NN-based key 
expansion, it is essential to verify that against the conventional 
AES. Thus the test involve the execution of NN-based 
AES_128. Furthermore, the NN-based AES has been compared 
with the AES with the following case. When the encryption 
process begins, the first 128-bits plaintext matrix is the follow-
ing:      

                    ―AES based on ANN‖ 
which  should be changed to Hexadecimal numbers matrix 

as: 

Training 
algorithm 

Epo-
chs 

Time(s) Performance 

AES Key 
expansion 

128 
8 0.7800000000001 1.352404646983 e -27 

AES Key 
expansion 

192 
9 1.35700000000000 5.997673605920 e -24 

AES Key 
expansion 

256 
10 1.46600000000000 2.082105121550 e-22 
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41 62 64 20 
45 61 20 41 
53 73 6F 4E 
20 65 6E 4E 
 
The key vector used is: 
00 04 08 0c 
01 05 09 0d 
02 06 0a 0e 
03 07 0b 0f 
 
The produced ciphertext in Hexadecimal matrix from is: 
01 f3 16 58 
fd df 3c 0a 
68 18 53 88 
cc 21 27 b7 
 
This will give the final ciphertext matrix: 
―&#245;p&#181;&amp;&#185;p(¬&#228;&#191;z)&#205;h

&#214;‖ 
 
When the decryption process begins, the first 128-bits re-

plaintext  Hexadecimal matrix is: 
 
41 62 64 20 
45 61 20 41 
53 73 6F 4E 
20 65 6E 4E 
 
where re-plaintext matrix which produced from the de-

cryption  process is: 
                          ―AES based on ANN‖ 
 
It is clear from the results of the execution, that there is 

some of the little differences little in the bits between the con-
ventional AES and ANN based AES. These error bits can be 
reduced and faded out as more number of iterations is 
achieved or the NN has been trained on all of the data that can 
be used in this Key Expansion algorithm. Furthermore, it has 
also been observed that there is a difference in one character 
between the trained text and the target text, this difference is 
shown in the following example: 

The target decimal number is: 31 (011111). while the output 
decimal number from the neural network is: 32 (100000) 

This error is occurred even if the target  performance of the 
error reaches the 10-15. The NN makes the training with the 
target data in its decimal representation, not in the binary rep-
resentation. Thus the NN considers the error between 31 and 
32 is too small. This problem occurs because of the properties 
of the LMA. 

6 CONCLUSIONS  

The paper presented a NN-Based key expansion instead of 
conventional way used to produce the rounds key in the con-
ventional AES. This will enhance the conventional AES securi-
ty since more than the original 128, 192 or 256 bits key size 

need to be guessed to break the AES. The paper comes to the 
following conclusions; 

i. The proposed key generation method reduces the 
threats of breaking the symmetric keys by taking artifi-
cial neural networks and from it the overall key will be 
generated. This strengthen the security since ANN 
training used to obtain the round keys only known by 
sender and receiver. 

ii. The design NN-based Key expansion in AES algorithm 
will produce a very complicated structure. This will be 
difficult for the  cryptanalyst or the cracker to guess. In 
this case not just the topology of the NN need to be 
guessed, but also need to know the number of adaptive 
iterations and the final weights for the Key expansion 
schedule. 

iii. The design is completely modular, this will make it 
possible to redesign or modify any module without af-
fecting the overall design. 

iv. Finally, there is very close correlation between the con-
ventional AES and the NN-based AES that uses NN for 
key expansion. 
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